dsearch — binary search (aka dichotomous search in french)
[ind, occ, info] = dsearch(X, val [, ch ])
a real vector or matrix
a real (row or column) vector with n components in strictly increasing order val(1) < val(2) < ... < val(n)
(optional) a character "c" or "d" (default value "c")
a real vector or matrix with the same dimensions than X
a real vector with the same format than val (but with n-1 components in the case ch="c")
integer
This function is useful to search in an ordered table and/or to count the number of components of a vector falling in some classes (a class being an interval or a value).
By default or when ch="c"
, this is the interval
case, that is, for each X(i) search in which of the n-1 intervals it
falls, the intervals being defined by:
I1 = [val(1), val(2)] Ik = (val(k), val(k+1)] for 1 < k <= n-1 ;
and:
is the interval number of X(i) (0 if X(i) is not in [val(1),val(n)])
is the number of components of X which are in Ik
is the number of components of X which are not in [val(1),val(n)]
When ch="d"
case, this is the discrete case, that
is, for each X(i) search if it is equal to one val(k) and:
is equal to the index of the component of val which matches X(i) (ind(i) = k if X(i)=val(k)) or 0 if X(i) is not in val.
is the number of components of X equal to val(k)
is the number of components of X which are not in the set {val(1),...,val(n)}
// example #1 (elementary stat for U(0,1)) m = 50000 ; n = 10; X = grand(m,1,"def"); val = linspace(0,1,n+1)'; [ind, occ] = dsearch(X, val); clf() ; plot2d2(val, [occ/m;0]) // no normalisation : y must be near 1/n // example #2 (elementary stat for B(N,p)) N = 8 ; p = 0.5; m = 50000; X = grand(m,1,"bin",N,p); val = (0:N)'; [ind, occ] = dsearch(X, val, "d"); Pexp = occ/m; Pexa = binomial(p,N); clf() ; hm = 1.1*max(max(Pexa),max(Pexp)); plot2d3([val val+0.1], [Pexa' Pexp],[1 2],"111", ... "Pexact@Pexp", [-1 0 N+1 hm],[0 N+2 0 6]) xtitle( "binomial distribution B("+string(N)+","+string(p)+") :" ... +" exact probability versus experimental ones") // example #3 (piecewise Hermite polynomial) x = [0 ; 0.2 ; 0.35 ; 0.5 ; 0.65 ; 0.8 ; 1]; y = [0 ; 0.1 ;-0.1 ; 0 ; 0.4 ;-0.1 ; 0]; d = [1 ; 0 ; 0 ; 1 ; 0 ; 0 ; -1]; X = linspace(0, 1, 200)'; ind = dsearch(X, x); // define Hermite base functions deff("y=Ll(t,k,x)","y=(t-x(k+1))./(x(k)-x(k+1))") // Lagrange left on Ik deff("y=Lr(t,k,x)","y=(t-x(k))./(x(k+1)-x(k))") // Lagrange right on Ik deff("y=Hl(t,k,x)","y=(1-2*(t-x(k))./(x(k)-x(k+1))).*Ll(t,k,x).^2") deff("y=Hr(t,k,x)","y=(1-2*(t-x(k+1))./(x(k+1)-x(k))).*Lr(t,k,x).^2") deff("y=Kl(t,k,x)","y=(t-x(k)).*Ll(t,k,x).^2") deff("y=Kr(t,k,x)","y=(t-x(k+1)).*Lr(t,k,x).^2") // plot the curve Y = y(ind).*Hl(X,ind) + y(ind+1).*Hr(X,ind) + d(ind).*Kl(X,ind) + d(ind+1).*Kr(X,ind); clf(); plot2d(X,Y,2) ; plot2d(x,y,-9,"000") xtitle("an Hermite piecewise polynomial") // NOTE : you can verify by adding these ones : // YY = interp(X,x,y,d); plot2d(X,YY,3,"000")