int3d — definite 3D integral by quadrature and cubature method
[result,err]=int3d(X,Y,Z,f [,nf[,params]])
a 4 by NUMTET
array containing the
abscissae of the vertices of the NUMTET
tetrahedrons.
a 4 by NUMTET
array containing the
ordinates of the vertices of the NUMTET
tetrahedrons.
a 4 by NUMTET
array containing the third
coordinates of the vertices of the NUMTET
tetrahedrons.
external (function or list or string) defining the integrand
f(xyz,nf)
, where xyz
is the
vector of a point coordinates and nf the number functions
the number of function to integate (default is 1)
real vector [minpts, maxpts, epsabs,
epsrel]
. default value is [0, 1000, 0.0,
1.d-5]
.
Desired bound on the absolute error.
Desired bound on the relative error.
Minimum number of function evaluations.
Maximum number of function evaluations. The number of function evaluations over each subregion is 43
the integral value,or vector of the integral values.
Estimates of absolute errors.
The function calculates an approximation to a given vector of definite integrals
I I I (F ,F ,...,F ) dx(3)dx(2)dx(1), 1 2 numfun
where the region of integration is a collection of NUMTET tetrahedrons and where
F = F (X(1),X(2),X(3)), J = 1,2,...,NUMFUN. J J
A globally adaptive strategy is applied in order to compute
approximations result(k)
hopefully satisfying, for each
component of I, the following claim for accuracy:
ABS(I(K)-RESULT(K))<=MAX(EPSABS,EPSREL*ABS(I(K)))
int3d
repeatedly subdivides the tetrahedrons with
greatest estimated errors and estimates the integrals and the errors over
the new subtetrahedrons until the error request is met or
MAXPTS
function evaluations have been used.
A 43 point integration rule with all evaluation points inside the tetrahedron is applied. The rule has polynomial degree 8.
If the values of the input parameters EPSABS
or
EPSREL
are selected great enough, an integration rule
is applied over each tetrahedron and the results are added up to give the
approximations RESULT(K)
. No further subdivision of the
tetrahedrons will then be applied.
When int3d
computes estimates to a vector of
integrals, all components of the vector are given the same treatment. That
is, I(Fj)
and I(Fk)
for
j
not equal to k
, are
estimated with the same subdivision of the region of integration. For
integrals with enough similarity, we may save time by applying
int3d
to all integrands in one call. For integrals that
varies continuously as functions of some parameter, the estimates produced
by int3d
will also vary continuously when the same
subdivision is applied to all components. This will generally not be the
case when the different components are given separate treatment.
On the other hand this feature should be used with caution when the different components of the integrals require clearly different subdivisions.
X=[0;1;0;0]; Y=[0;0;1;0]; Z=[0;0;0;1]; [RESULT,ERROR]=int3d(X,Y,Z,'int3dex') // computes the integrand exp(x*x+y*y+z*z) over the //tetrahedron (0.,0.,0.),(1.,0.,0.),(0.,1.,0.),(0.,0.,1.) //integration over a cube -1<;=x<=1;-1<=y<=1;-1<=z<=1 // bottom -top- right -left- front -rear- X=[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; -1,-1, -1,-1, 1, 1, -1,-1, -1,-1, -1,-1; 1,-1, 1,-1, 1, 1, -1,-1, 1,-1, 1,-1; 1, 1, 1, 1, 1, 1, -1,-1, 1, 1, 1, 1]; Y=[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; -1,-1, -1,-1, -1, 1, -1, 1, -1,-1, 1, 1; -1, 1, -1, 1, 1, 1, 1, 1, -1,-1, 1, 1; 1, 1, 1, 1, -1,-1, -1,-1, -1,-1, 1, 1]; Z=[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; -1,-1, 1, 1, -1, 1, -1, 1, -1,-1, -1,-1; -1,-1, 1, 1, -1,-1, -1,-1, -1, 1, -1, 1; -1,-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; function v=f(xyz,numfun),v=exp(xyz'*xyz),endfunction [result,err]=int3d(X,Y,Z,f,1,[0,100000,1.d-5,1.d-7]) function v=f(xyz,numfun),v=1,endfunction [result,err]=int3d(X,Y,Z,f,1,[0,100000,1.d-5,1.d-7])
The Computing Centre, University of Bergen, Thormohlens gt. 55, N-5008 Bergen, Norway Phone.. 47-5-544055 Email.. jarle@eik.ii.uib.no,
Dept. of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3030 Heverlee, Belgium Phone.. 32-16-201015 (3562) Email.. ronald@cs.kuleuven.ac.be,
Department of Informatics, University of Bergen, Thormohlens gt. 55, N-5008 Bergen, Norway Phone.. 47-5-544180 Email.. terje@eik.ii.uib.no