interp — cubic spline evaluation function
[yp [,yp1 [,yp2 [,yp3]]]]=interp(xp, x, y, d [, out_mode])
real vector or matrix
real vectors of the same size defining a cubic spline or
sub-spline function (called s
in the
following)
(optional) string defining the evaluation of
s
outside the [x1,xn] interval
vector or matrix of same size than xp
,
elementwise evaluation of s
on
xp
(yp(i)=s(xp(i) or yp(i,j)=s(xp(i,j))
vectors (or matrices) of same size than xp
,
elementwise evaluation of the successive derivatives of
s
on xp
Given three vectors (x,y,d)
defining a spline or
sub-spline function (see splin) with
yi=s(xi), di = s'(xi)
this function evaluates
s
(and s', s'', s'''
if needed) at
xp(i)
:
The out_mode
parameter set the evaluation rule
for extrapolation, i.e. for xp(i)
not in [x1,xn]
:
an extrapolation by zero is done
extrapolation by Nan
the extrapolation is defined as follows :
the extrapolation is defined as follows
(p_i being the polynomial defining
s
on [x_i,x_{i+1}]) :
the extrapolation is defined as follows :
s
is extended by periodicity.
// see the examples of splin and lsq_splin // an example showing C2 and C1 continuity of spline and subspline a = -8; b = 8; x = linspace(a,b,20)'; y = sinc(x); dk = splin(x,y); // not_a_knot df = splin(x,y, "fast"); xx = linspace(a,b,800)'; [yyk, yy1k, yy2k] = interp(xx, x, y, dk); [yyf, yy1f, yy2f] = interp(xx, x, y, df); clf() subplot(3,1,1) plot2d(xx, [yyk yyf]) plot2d(x, y, style=-9) legends(["not_a_knot spline","fast sub-spline","interpolation points"],... [1 2 -9], "ur",%f) xtitle("spline interpolation") subplot(3,1,2) plot2d(xx, [yy1k yy1f]) legends(["not_a_knot spline","fast sub-spline"], [1 2], "ur",%f) xtitle("spline interpolation (derivatives)") subplot(3,1,3) plot2d(xx, [yy2k yy2f]) legends(["not_a_knot spline","fast sub-spline"], [1 2], "lr",%f) xtitle("spline interpolation (second derivatives)") // here is an example showing the different extrapolation possibilities x = linspace(0,1,11)'; y = cosh(x-0.5); d = splin(x,y); xx = linspace(-0.5,1.5,401)'; yy0 = interp(xx,x,y,d,"C0"); yy1 = interp(xx,x,y,d,"linear"); yy2 = interp(xx,x,y,d,"natural"); yy3 = interp(xx,x,y,d,"periodic"); clf() plot2d(xx,[yy0 yy1 yy2 yy3],style=2:5,frameflag=2,leg="C0@linear@natural@periodic") xtitle(" different way to evaluate a spline outside its domain")