lft — linear fractional transformation
[P1]=lft(P,K) [P1]=lft(P,r,K) [P1,r1]=lft(P,r,Ps,rs)
linear system (syslin
list), the ``augmented'' plant, implicitly partitioned into four blocks (two input ports and two output ports).
linear system (syslin
list), the controller (possibly an ordinary gain).
1x2 row vector, dimension of P22
linear system (syslin
list), implicitly partitioned into four blocks (two input ports and two output ports).
1x2 row vector, dimension of Ps22
Linear fractional transform between two standard plants
P
and Ps
in state space form or in
transfer form (syslin
lists).
r= size(P22) rs=size(P22s)
lft(P,r, K)
is the linear fractional transform
between P
and a controller K
(K
may be a gain or a controller in state space form
or in transfer form);
lft(P,K)
is lft(P,r,K)
with
r
=size of K
transpose;
P1= P11+P12*K* (I-P22*K)^-1 *P21
[P1,r1]=lft(P,r,Ps,rs)
returns the generalized (2
ports) lft of P
and Ps
.
P1
is the pair two-port interconnected plant and the
partition of P1
into 4 blocks in given by
r1
which is the dimension of the 22
block of P1
.
P
and R
can be PSSDs i.e. may admit a
polynomial D
matrix.
s=poly(0,'s'); P=[1/s, 1/(s+1); 1/(s+2),2/s]; K= 1/(s-1); lft(P,K) lft(P,[1,1],K) P(1,1)+P(1,2)*K*inv(1-P(2,2)*K)*P(2,1) //Numerically dangerous! ss2tf(lft(tf2ss(P),tf2ss(K))) lft(P,-1) f=[0,0;0,1];w=P/.f; w(1,1) //Improper plant (PID control) W=[1,1;1,1/(s^2+0.1*s)];K=1+1/s+s lft(W,[1,1],K); ss2tf(lft(tf2ss(W),[1,1],tf2ss(K)))