penlaur — Laurent coefficients of matrix pencil
[Si,Pi,Di,order]=penlaur(Fs) [Si,Pi,Di,order]=penlaur(E,A)
a regular pencil s*E-A
two real square matrices
three real square matrices
integer
penlaur
computes the first Laurent coefficients of (s*E-A)^-1
at
infinity.
(s*E-A)^-1 = ... + Si/s - Pi - s*Di + ...
at s
= infinity.
order
= order of the singularity (order=index-1).
The matrix pencil Fs=s*E-A
should be invertible.
For a index-zero pencil, Pi, Di,...
are zero and Si=inv(E)
.
For a index-one pencil (order=0),Di
=0.
For higher-index pencils, the terms -s^2 Di(2), -s^3 Di(3),...
are given by:
Di(2)=Di*A*Di
, Di(3)=Di*A*Di*A*Di
(up
to Di(order)
).