%sn — Jacobi 's elliptic function
[y]=%sn(x,m)
a point inside the fundamental rectangle defined by the elliptic integral; x
is a vector of complex numbers
parameter of the elliptic integral (0<m<1
)
result
Jacobi 's sn elliptic function with parameter m
: the inverse
of the elliptic integral for the parameter m
.
The amplitude am is computed in fortran and the addition formulas for elliptic functions are applied
m=0.36; K=%k(m); P=4*K; //Real period real_val=0:(P/50):P; plot(real_val,real(%sn(real_val,m))) clf(); KK=%k(1-m); Ip=2*KK; ima_val1=0:(Ip/50):KK-0.001; ima_val2=(KK+0.05):(Ip/25):(Ip+KK); z1=%sn(%i*ima_val1,m);z2=%sn(%i*ima_val2,m); plot2d([ima_val1',ima_val2'],[imag(z1)',imag(z2)']); xgrid(3)