spantwo — sum and intersection of subspaces
[Xp,dima,dimb,dim]=spantwo(A,B, [tol])
two real or complex matrices with equal number of rows
square non-singular matrix
integers, dimension of subspaces
nonnegative real number
Given two matrices A
and B
with same number of rows,
returns a square matrix Xp
(non singular but not necessarily orthogonal)
such that :
[A1, 0] (dim-dimb rows) Xp*[A,B]=[A2,B2] (dima+dimb-dim rows) [0, B3] (dim-dima rows) [0 , 0]
The first dima
columns of inv(Xp)
span range(A
).
Columns dim-dimb+1
to dima
of inv(Xp)
span the
intersection of range(A) and range(B).
The dim
first columns of inv(Xp)
span
range(A
)+range(B
).
Columns dim-dimb+1
to dim
of inv(Xp)
span
range(B
).
Matrix [A1;A2]
has full row rank (=rank(A)). Matrix [B2;B3]
has
full row rank (=rank(B)). Matrix [A2,B2]
has full row rank (=rank(A inter B)). Matrix [A1,0;A2,B2;0,B3]
has full row rank (=rank(A+B)).
A=[1,0,0,4; 5,6,7,8; 0,0,11,12; 0,0,0,16]; B=[1,2,0,0]';C=[4,0,0,1]; Sl=ss2ss(syslin('c',A,B,C),rand(A)); [no,X]=contr(Sl('A'),Sl('B'));CO=X(:,1:no); //Controllable part [uo,Y]=unobs(Sl('A'),Sl('C'));UO=Y(:,1:uo); //Unobservable part [Xp,dimc,dimu,dim]=spantwo(CO,UO); //Kalman decomposition Slcan=ss2ss(Sl,inv(Xp));