splin3d — spline gridded 3d interpolation
tl = splin3d(x, y, z, v, [order])
strictly increasing row vectors (each with at least 3 components) defining the 3d interpolation grid
nx x ny x nz hypermatrix (nx, ny, nz being the length of
x
, y
and
z
)
(optional) a 1x3 vector [kx,ky,kz] given the order of the tensor spline in each direction (default [4,4,4], i.e. tricubic spline)
a tlist of type splin3d defining the spline
This function computes a 3d tensor spline s
which interpolates the (xi,yj,zk,vijk) points, ie, we
have s(xi,yj,zk)=vijk for all
i=1,..,nx, j=1,..,ny and
k=1,..,nz. The resulting spline
s is defined by tl
which consists
in a B-spline-tensor representation of s. The
evaluation of s at some points must be done by the
interp3d function (to compute
s and its first derivatives) or by the bsplin3val function (to compute an arbitrary
derivative of s) . Several kind of splines may be
computed by selecting the order of the spline in each direction
order=[kx,ky,kz]
.
// example 1 // ============================================================================= func = "v=cos(2*%pi*x).*sin(2*%pi*y).*cos(2*%pi*z)"; deff("v=f(x,y,z)",func); n = 10; // n x n x n interpolation points x = linspace(0,1,n); y=x; z=x; // interpolation grid [X,Y,Z] = ndgrid(x,y,z); V = f(X,Y,Z); tl = splin3d(x,y,z,V,[5 5 5]); m = 10000; // compute an approximated error xp = grand(m,1,"def"); yp = grand(m,1,"def"); zp = grand(m,1,"def"); vp_exact = f(xp,yp,zp); vp_interp = interp3d(xp,yp,zp, tl); er = max(abs(vp_exact - vp_interp)) // now retry with n=20 and see the error // example 2 (see linear_interpn help page which have the // same example with trilinear interpolation) // ============================================================================= exec("SCI/modules/interpolation/demos/interp_demo.sci") func = "v=(x-0.5).^2 + (y-0.5).^3 + (z-0.5).^2"; deff("v=f(x,y,z)",func); n = 5; x = linspace(0,1,n); y=x; z=x; [X,Y,Z] = ndgrid(x,y,z); V = f(X,Y,Z); tl = splin3d(x,y,z,V); // compute (and display) the 3d spline interpolant on some slices m = 41; dir = ["z=" "z=" "z=" "x=" "y="]; val = [ 0.1 0.5 0.9 0.5 0.5]; ebox = [0 1 0 1 0 1]; XF=[]; YF=[]; ZF=[]; VF=[]; for i = 1:length(val) [Xm,Xp,Ym,Yp,Zm,Zp] = slice_parallelepiped(dir(i), val(i), ebox, m, m, m); Vm = interp3d(Xm,Ym,Zm, tl); [xf,yf,zf,vf] = nf3dq(Xm,Ym,Zm,Vm,1); XF = [XF xf]; YF = [YF yf]; ZF = [ZF zf]; VF = [VF vf]; Vp = interp3d(Xp,Yp,Zp, tl); [xf,yf,zf,vf] = nf3dq(Xp,Yp,Zp,Vp,1); XF = [XF xf]; YF = [YF yf]; ZF = [ZF zf]; VF = [VF vf]; end nb_col = 128; vmin = min(VF); vmax = max(VF); color = dsearch(VF,linspace(vmin,vmax,nb_col+1)); xset("colormap",jetcolormap(nb_col)); clf(); xset("hidden3d",xget("background")); colorbar(vmin,vmax) plot3d(XF, YF, list(ZF,color), flag=[-1 6 4]) xtitle("3d spline interpolation of "+func) xselect()