surf — 3D surface plot
surf(Z,<GlobalProperty>) surf(Z,color,<GlobalProperty>) surf(X,Y,Z,<color>,<GlobalProperty>) surf(<axes_handle>,...)
a real matrix defining the surface height. It can not be
omitted. The Z data is a m
xn
matrix.
two real matrices or vectors: always set together, these data
defines a new standard grid. This new X
and
Y
components of the grid must match Z
dimensions (see description below).
an optional real matrix defining a color value for each
(X(j),Y(i))
point of the grid (see description
below).
This optional argument represents a sequence of couple
statements {PropertyName,PropertyValue}
that defines
global objects' properties applied to all the curves created by this
plot. For a complete view of the available properties (see
GlobalProperty).
This optional argument forces the plot to appear inside the
selected axes given by axes_handle
rather than the
current axes (see gca).
surf
draws a colored parametric surface using a
rectangular grid defined by X
and Y
coordinates
(if {X,Y}
are not specified, this grid is determined using
the dimensions of the Z
matrix) ; at each point of this grid,
a Z coordinate is given using the Z
matrix (only obligatory
data). surf
has been created to better handle Matlab syntax.
To improve graphical compatibility, Matlab users should use
surf
(rather than plot3d).
Data entry specification :
In this paragraph and to be more clear, we won't mention
GlobalProperty
optional arguments as they do not interfer
with entry data (except for "Xdata"
, "Ydata"
and
"Zdata"
property, see GlobalProperty). It is
assumed that all those optional arguments could be present too.
If Z
is the only matrix specified, surf(Z) plots the
matrix Z
versus the grid defined by 1:size(Z,2)
along the x axis and 1:size(Z,1)
along the y axis.
If a {X,Y,Z}
triplet is given, Z
must be a
matrix with size(Z
)= [m
xn
],
X
or Y
can be :
a) a vector : if X
is a vector,
length(X
)=n
. Respectively, if Y
is a vector, length(Y
)=m
.
b) a matrix : in this case, size(X
) (or
size(Y
)) must equal size(Z
).
Color entry specification :
As stated before, the surface is created over a rectangular grid
support. Let consider two independant variables i
and
j
such as :
This imaginary rectangular grid is used to build the real surface
support onto the XY
plane. Indeed,
X
,Y
and Z
data have the same size
(even if X
or Y
is vector, see below) and can be
considered as 3 functions x(i,j)
, y(i,j)
and
z(i,j)
specifying the desired surface. If X
or
Y
are vectors, they are internally treated to produce good
matrices matching the Z
matrix dimension (and the grid is
forcibly a rectangular region).
Considering the 3 functions x(i,j)
, y(i,j)
and z(i,j)
, the portion of surface defining between two
consecutive i
and j
is called a patch.
By default, when no color matrix is added to a surf call, the color
parameter is linked to the Z
data. When a color
matrix is given, it can be applied to the patch in two different ways : at
the vertices or at the center of each patch.
That is why, if Z
is a [m
xn
]
matrix, the C color
matrix dimension can be
[m
xn
] (one color defined per vertex) or
[m-1
xn-1
] (one color per patch).
Color representation also varies when specifying some GlobalPropery:
The FaceColor
property sets the shading mode : it can
be 'interp'
or 'flat'
(default mode). When
'interp'
is selected, we perform a bilinear color
interpolation onto the patch. If size(C
) equals
size(Z
)-1 (i.e. we provided only one color per patch) then
the color of the vertices defining the patch is set to the given color of
the patch.
When 'flat'
(default mode) is enabled we use a color
faceted representation (one color per patch). If size(C
)
equals size(Z
) (i.e. we provided only one color per
vertices), the last row and column of C
are ignored.
The GlobalProperty
arguments sould be used to customize
the surface. Here is a brief description on how it works:
This option may be used to specify how all the surfaces are
drawn. It must always be a couple statement constituted of a string
defining the PropertyName
, and its associated value
PropertyValue
(which can be a string or an integer or...
as well depending on the type of the PropertyName
). Note
that you can set multiple properties : the face & edge color,
color data, color data mapping, marker color (foreground and
background), the visibility, clipping and thickness of the edges of
the surface... (see GlobalProperty )
Note that all these properties can be (re-)set throught the surface entity properties (see surface_properties).
By default, successive surface plots are superposed. To clear the
previous plot, use clf()
. To enable auto_clear
mode as the default mode, edit your default axes doing:
da=gda();
da.auto_clear = 'on'
Enter the command surf
to see a demo.
// Z initialisation Z= [ 0.0001 0.0013 0.0053 -0.0299 -0.1809 -0.2465 -0.1100 -0.0168 -0.0008 -0.0000 0.0005 0.0089 0.0259 -0.3673 -1.8670 -2.4736 -1.0866 -0.1602 -0.0067 0.0000 0.0004 0.0214 0.1739 -0.3147 -4.0919 -6.4101 -2.7589 -0.2779 0.0131 0.0020 -0.0088 -0.0871 0.0364 1.8559 1.4995 -2.2171 -0.2729 0.8368 0.2016 0.0130 -0.0308 -0.4313 -1.7334 -0.1148 3.0731 0.4444 2.6145 2.4410 0.4877 0.0301 -0.0336 -0.4990 -2.3552 -2.1722 0.8856 -0.0531 2.6416 2.4064 0.4771 0.0294 -0.0137 -0.1967 -0.8083 0.2289 3.3983 3.1955 2.4338 1.2129 0.2108 0.0125 -0.0014 -0.0017 0.3189 2.7414 7.1622 7.1361 3.1242 0.6633 0.0674 0.0030 0.0002 0.0104 0.1733 1.0852 2.6741 2.6725 1.1119 0.1973 0.0152 0.0005 0.0000 0.0012 0.0183 0.1099 0.2684 0.2683 0.1107 0.0190 0.0014 0.0000]; //simple surface surf(Z); // Note that X and Y are determined by Z dimensions //same surface with red face color and blue edges scf(2); // new figure number 2 surf(Z,'facecol','red','edgecol','blu") // X and Y initialisation // NB: here, X has the same lines and Y the same columns X = [ -3.0000 -2.3333 -1.6667 -1.0000 -0.3333 0.3333 1.0000 1.6667 2.3333 3.0000 -3.0000 -2.3333 -1.6667 -1.0000 -0.3333 0.3333 1.0000 1.6667 2.3333 3.0000 -3.0000 -2.3333 -1.6667 -1.0000 -0.3333 0.3333 1.0000 1.6667 2.3333 3.0000 -3.0000 -2.3333 -1.6667 -1.0000 -0.3333 0.3333 1.0000 1.6667 2.3333 3.0000 -3.0000 -2.3333 -1.6667 -1.0000 -0.3333 0.3333 1.0000 1.6667 2.3333 3.0000 -3.0000 -2.3333 -1.6667 -1.0000 -0.3333 0.3333 1.0000 1.6667 2.3333 3.0000 -3.0000 -2.3333 -1.6667 -1.0000 -0.3333 0.3333 1.0000 1.6667 2.3333 3.0000 -3.0000 -2.3333 -1.6667 -1.0000 -0.3333 0.3333 1.0000 1.6667 2.3333 3.0000 -3.0000 -2.3333 -1.6667 -1.0000 -0.3333 0.3333 1.0000 1.6667 2.3333 3.0000 -3.0000 -2.3333 -1.6667 -1.0000 -0.3333 0.3333 1.0000 1.6667 2.3333 3.0000]; Y= [ -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 -2.3333 -2.3333 -2.3333 -2.3333 -2.3333 -2.3333 -2.3333 -2.3333 -2.3333 -2.3333 -1.6667 -1.6667 -1.6667 -1.6667 -1.6667 -1.6667 -1.6667 -1.6667 -1.6667 -1.6667 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -0.3333 -0.3333 -0.3333 -0.3333 -0.3333 -0.3333 -0.3333 -0.3333 -0.3333 -0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.6667 1.6667 1.6667 1.6667 1.6667 1.6667 1.6667 1.6667 1.6667 1.6667 2.3333 2.3333 2.3333 2.3333 2.3333 2.3333 2.3333 2.3333 2.3333 2.3333 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000]; // example 1 scf(3) surf(X,Y,Z) //example 2 // As you can see, the grid is not necessary rectangular scf(4) X(1,4) = -1.5; Y(1,4) = -3.5; Z(1,4) = -2; surf(X,Y,Z) // example 3 // X and Y are vectors => same behavior as sample 1 // With vectors, the grid is inevitably rectangular scf(5)// new figure number 5 X=[ -3.0000 -2.3333 -1.6667 -1.0000 -0.3333 0.3333 1.0000 1.6667 2.3333 3.0000]; Y=X; surf(X,Y,Z) //LineSpec and GlobalProperty examples: xdel(winsid()) // destroy all existing figures surf(Z,Z+5) // color array specified e=gce(); e.cdata_mapping='direct' // default is 'scaled' relative to the colormap e.color_flag=3; // interpolated shading mode. The default is 4 ('flat' mode) for surf scf(2) surf(X,Y,Z,'colorda',ones(10,10),'edgeco','cya','marker','penta','markersiz',20,'markeredg','yel','ydata',56:65) scf(3) surf(Z,'cdatamapping','direct') scf(4) surf(Z,'facecol','interp') // interpolated shading mode (color_flag == 3) scf(10) axfig10=gca(); scf(11); surf(axfig10,Z,'ydat',[100:109],'marker','d','markerfac','green','markeredg','yel') // draw onto the axe of figure 10 xdel(winsid())