contr — controllability, controllable subspace, staircase
n=contr(A,B [,tol]) [n,U]=contr(A,B [,tol]) [n,U,ind,V,Ac,Bc]=contr(A,B,[,tol])
real matrices
tolerance parameter
dimension of controllable subspace.
orthogonal change of basis which puts (A,B)
in canonical form.
orthogonal matrix, change of basis in the control space.
block Hessenberg matrix Ac=U'*A*U
is U'*B*V
.
p integer vector associated with controllability indices (dimensions of subspaces B, B+A*B,...=ind(1),ind(1)+ind(2),...
)
[n,[U]]=contr(A,B,[tol])
gives the controllable form of an (A,B)
pair.(dx/dt = A x + B u
or x(n+1) = A x(n) +b u(n)
).
The n
first columns of U
make a basis for the controllable
subspace.
If V=U(:,1:n)
, then V'*A*V
and V'*B
give the controllable part
of the (A,B)
pair.
The pair (Bc, Ac)
is in staircase controllable form.
|B |sI-A * . . . * * | | 1| 11 . . . | | | A sI-A . . . | | | 21 22 . . . | | | . . * * | [U'BV|sI - U'AU] = |0 | 0 . . | | | A sI-A * | | | p,p-1 pp | | | | |0 | 0 0 sI-A | | | p+1,p+1|